
International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 163
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Automated Data Partitioning Scheme For High
Performance Transactional Systems

Ashwed Patil
Abstract— Data Partitioning Strategies in modern transactional processing systems have a significant impact on the overall performance, throughput
and scalability. In order to maximize the benefits, many such systems settle for weak consistency models. Modern Transactional Systems have a hybrid
architecture that is a combination of client server machines and distributed environment. This paper proposes a system which uses an optimal
automated data partitioning technique based on machine learning which can considerably reduce workload on server preventing its failure. A retail
website framework and focus on local optimization (client server level) to achieve high performance is considered..

Index Terms— Data Partitioning, Machine Learning, Client Server Architecture, Transaction, Consistency, Scalability, Classification

—————————— ——————————

1 INTRODUCTION

Data Partitioning strategies play a central role in the

performance of transactional systems. Modern transactional
systems have a hybrid architecture which is usually a
combination of client server machines and distributed
environment. Techniques such as replication or fragmentation
provide efficient solutions at distributed level. However,
partitioning strategies at client server level haven't improved
much as compared to distributed level. Executing transactions
usually involves JOIN operation on multiple tables which is
time consuming and complex. This could result in server
failure due to excessive load of recurring JOIN operations for
every query. Data objects which are frequently accessed by
multiple transactions, if placed on a separate partition can
significantly reduce execution time and increase the
performance. Use of machine learning in partitioning can
automate the process while still maintaining the ACID
properties.
 Maintaining the reliability at incremental scaling is
one of the biggest challenges for transactional systems based
on hybrid architectures. For this purpose, many modern
transactional systems use a decentralized, highly coupled
service architecture. Dynamo, Amazon's key-value based
distributed database[1] uses consistent hashing for
partitioning[4] which offers incremental scaling but at the cost
of increased complexity. The system also uses Merkle trees

trees[5]to recover from server failures by using
synchronization of replicas in the background which
however, can increase performance overheads
 Other systems such as BigTable[2] or PNUTS[3] use
dedicated directory services that offer flexibility but their
performance suffers significantly on client server level,
especially when relying on remote directory services..Table 1
summarizes the data partitioning and storage strategies of
 some modern transactional systems based on hybrid
architecture.

Table 1: Summary of techniques used in modern
transactional systems.

System Technique(s) Advantage Disadvantage
Dynamo:
Amazon's
Key-Value
Store

Consistent
Hashing,
Merkle Trees

Incremental
Scalability

Increased
complexity,
Synchronization
Overheads

PNUTS:
Yahoo's
Data
Serving
Platform

Hash table
mapping,
message
broker

Low
latency,
consistency
guarantees

Centrally
managed, high
risk of server
failure

BigTable:
Google's
Distributed
Database

Google
SSTable

High
flexibility

Relaxed
consistency

 Thus, most of the modern transactional systems
sacrifice one or the other performance metrics to achieve high
efficiency. Also, there is a significant lack of optimized
partitioning techniques at the client server level which
increases the risk of server failure to a great extent. Our
proposed system introduces a key innovative solution that
uses machine learning to automated the data partitioning
process without sacrificing any of the performance
parameters.

————————————————
• Ashwed Patil is currently pursuing bachelors degree program in computer

engineering in K.K. Wagh Institute of Engineering Education and
Research, Savitribai Phule Pune University, India, PH-919673488925. E-
mail: ashwed3194@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 164
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 The paper is structured as follows. Section 2 presents
the system architecture and Section 3 describes the
implementation. Section 4 presents the result and Section 5
concludes the paper.

2. SYSTEM DESIGN AND ARCHITECTURE

2.1 DESIGN ASSUMPTIONS AND
CONSIDERATIONS
In context of databases, a transaction is a single logical unit of
work on data. ACID (Atomicity, Consistency, Isolation,
Durability) properties guarantee that the transactions are
processed reliably. A partition is a division of logical database
and is usually done for higher performance or availability.
Many systems tend to sacrifice ACID properties during data
partitioning usually for higher availability and then operate on
weak consistency.
 The scope of the paper is limited to local
optimization. We consider application of the proposed
technique at client server level and it may not be efficient at
distributed level. The project will partition the transactions to
correct data partitions and does not extend to memory
partitioning. The performance metrics are measured only with
respect to consistency, scalability and throughput. The dataset
used in the system described by the paper is relatively small as
compared to modern real time applications.
 Finally, we do not consider certain constraints such as
network latency in client server environment and server
storage capacity.

2.2 SYSTEM ARCHITECTURE
We consider a retail based framework based on a service
oriented architecture. Traditionally, transactional processing
systems have been storing their state in relational databases.
The complex querying and management functionality of
RDMS is largely kept hidden through abstraction with
multiple logical views. This makes it suitable for service
oriented architectures.
 The data objects in the proposed system have a
special attribute called counter which keeps a track of search
record for that data object. A particular threshold value is set
manually in the server settings during the implementation. If a
product is searched more than its specified threshold value,
then it is placed in the cache table. During the next search
operation, the product will be searched from the cache table
instead of performing JOIN operation on multiple tables. This
will significantly reduce the execution time.
 As mentioned earlier, use of machine learning in
partitioning can automate the process while still maintaining
the ACID properties.

 For the sake of designing a prototype, we consider
only a single client server environment. In case of real time
hybrid architecture based applications, the mechanism can be
replicated on each client server subsystems. Since we do not
deal with distributed level, we assume some sort of replication
or fragmentation mechanism to be already present at that
level.
Figure 1 shows the overall system architecture of the proposed
system.

Figure 1: System architecture based on the retail framework

2.3 ALGORITHM
We use the basic classification technique based on the counter
value to determine whether the data object can be classified to
the new partition or not. The partitioning mechanism for
placing the product data object is described below :

1. Get the Product name search string
2. Check the counter attribute of the Product
3. If counter value > threshold value, mark the product data
object
4. If product is searched once more than its counter value, add
the product to cache table.
5. If product data object exists in cache table, display result
from cache otherwise goto Step 2.

We illustrate the technique further with an example. Consider
a product X which is to be searched. Consider that the
threshold value for a particular value is set to be 3 and the
counter value for X is initially 0. When searched for the 4th
time, the product is added to the cache table i.e. on a new
partition. When the product is searched for the 5th time, the
details are accessed from the new partition rather than
multiple JOIN operations on the relevant table.

3. IMPLEMENTATION

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 165
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A 337kb dataset for building the system prototype was
obtained from the open source solution www.opencart.com.
A relational database consisting of multiple tables is the global
data structure in the system. The transaction query is stored in
a log table which is referred by the system during its
execution.

3.1 RISK ANALYSIS
The risks that may hinder the performance of the system
 were analyzed within the constraints of time and quality. The
overall impact of these risks was considered during the system
implementation.

Table 2: Risk Analysis for the system

Description Probability Impact
Server Failure Moderate High
Storage Constraints Low High
Product not placed in
cache

Moderate High

4. RESULTS

The system described in the paper showed an improvement
of 61% in performance when a data object was accessed from
the cache.
 When searched for the first time, the product
SamsungSyncMaster 941BW62 took 0.0120029s. The counter
threshold was set to 3. After searching for the 4th time, the
product was added to the new partition. When searched for
the 5th time, the time take was only 0.0046410s.

Figure 2: Product searched for the first time

Figure 2: Product search result after it was accessed from the
cache partition.

Table 3 gives a brief summary of product counter values and
the corresponding time required to display the search results.

Table 3 : Summary of product search results

Counter Value Search Time
1 0.0120029
2 0.0120031
3 0.0110432
4 0.0204588
5 0.0046410

5. CONCLUSION AND FUTURE SCOPE

5.1 CONCLUSION
Modern Transactional systems sacrifice consistency to achieve
high scalability and increased performance. Partitioning
Strategies at client-server level are not optimized and
significantly degrade the performance. The caching
mechanism used in our system is an automated process. It is
found to considerably reduce the time to fetch product
searched by the user. It does so by avoiding complex table
JOIN operations on every search query. Hence, our proposed
system used a machine learning based automated data
partitioning technique for client server machines to achieve
high performance.

5.2 FUTURE SCOPE
The performance of the system can be more accurately
analyzed by comparing the efficiency at different data sizes.
The partitioning technique proposed in the project can be
modified for application at distributed level. A hybrid
mechanism involving replication, fragmentation and the
technique described in the paper can be considered for more
enhancements.

ACKNOWLEDGMENTS
I would like to thank Prof. Dr. S.S. Sane and Prof. W.W.
Pingle from the Department of Computer Engineering, K.K.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 166
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Wagh Institute of Engineering Education and Research,
Nashik, India for their helpful comments and pointers for the
literature survey.

References
[1] G. DeCandia et al. Dynamo: Amazon’s highly available keyvalue

store". In SOSP ’07
[2] F. Chang et al. Bigtable: a distributed storage system for structured

data. In OSDI ’06
[3] B. F. Cooper et al. Pnuts: Yahoo!’s hosted data serving platform.

VLDB ’08.
[4] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., and

Lewin, D. 1997. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on
theory of Computing (El Paso, Texas, United States, May 04 - 06,
1997). STOC '97. ACM Press, New York, NY, 654-663.

[5] Blaise Gassend et al. Caches and Merkle Trees for Efficient Memory
Authentication. In HPCA'03.

[6] A. Turcu, R. Palmieri, and B. Ravindran. Automated data
partitioning for highly scalable and strongly consistent transactions.
In SYSTOR ’14.

[7] S. Papadomanolakis and A. Ailamaki. Autopart: automating schema
design for large scientific databases using data partitioning. In
SSDBM ’04

IJSER

http://www.ijser.org/

	1 Introduction
	2. SYSTEM DESIGN AND ARCHITECTURE
	ACKNOWLEDGMENTS

